Software reference architectures: related architectural concepts, challenges, and (new?) domains

Matthias Galster

Department of Computer Science and Software Engineering

May 6, 2015

Goals

Relate RA to other architectural concepts

Discuss high-level, non-technical challenges related to the design and use of RA

Explore domains that may benefit from RA

Take-away messages

"Reference architecture" is a fuzzy concept.

Reliance on RA may limit flexibility and innovation.

We may explore RA for cross-cutting domains.

This talk has three parts.

Part I – architectural concepts

Software framework

Reference model

Reference architecture

Architecture framework

Starting point: reference architecture

- Reusable architectural knowledge
 - Generic artifacts, standards, design guidelines, styles, vocabulary, etc.
 - Architectural best practices
- Not a highly specialized set of requirements
 - Used as starting points to specialize for own requirements
 - Used in and across organizations in a domain
- Why
 - Standardization, interoperability
 - Speed up development

P. Kruchten: The rational unified process: an introduction. 2004

S. Angelov et al.: A classification of software reference architectures: analyzing their success and effectiveness. WICSA 2009

Architecture frameworks?

Architecture frameworks

- Focus on creating and using architecture description
 - Set of conceptually related viewpoints (according to ISO/IEC/IEEE 42010)
- Structure thinking and architecture description: layers or views
- Could be part of software reference architecture description
 - Generic and common vocabulary
 - But maybe not (application, development) domain-specific?
 - Often defined for high-level domains, free of detailed domain information

Viewpoints

Viewpoints

Used to create architecture views

Views

- Concrete architecture from perspective of different stakeholders
- Frame concerns of those stakeholders

Viewpoints

- Conventions for describing architecture-related concerns
- Set of stakeholders holding those concerns
- Set of model kinds
- Correspondence rules between different architectural models

So how are viewpoints "similar" to reference architectures?

Provide generic architecture knowledge to document, but without "implementation"

Software frameworks

```
* Simple HelloButton() method.
 * @version 1.0
 * @author john doe <doe.j@example.com>
HelloButton()
  JButton hello = new JButton( "Hello, wor
  hello.addActionListener( new HelloBtnList
  // use the JFrame type until support for t
  // new component is finished
  JFrame frame = new JFrame( "Hello Button"
  Container pane = frame.getContentPane();
  pane.add( hello );
  frame.pack();
  frame.show();
                       // display the fra
```

Software frameworks

- About implementation, code
 - Generic functionality that can be adapted by user-written code
 - Reusable "software environment"

- Can include compilers, code libraries, tools or API's
- In contrast to regular libraries
 - Define program control flow
 - Extensibility (e.g., through overriding or specialization of code)
 - May not allow their code to be modified
 - I.e., have their own architecture

Examples

- ASP.NET
- MonoRail
- Google Web Toolkit
- Node.js
- CherryPy
- Django
- Ruby on Rails

Software frameworks have architecture

Django

- Model: describes data
- Template: how user sees data (e.g., html pages)
- Views: what users see
- Controller: URL dispatcher

Software frameworks are **generic** and provide means for **implementing** (rather than describing) software systems

Reference models

Reference models

- Abstract framework or domain-specific ontology
- Interlinked set of clearly defined concepts
- Division of functionality with data flow between the pieces
 - Decomposition of problem into parts that cooperatively solve problem
- Reference architecture
 - Reference model mapped onto software elements
 - Software elements implement functionality of reference model

Whereas reference modeling divides functionality, RA is mapping of that functionality onto system decomposition

Examples

von Neumann architecture for sequential computing

OSI layer reference model

Product line architecture

- Reference architecture = product line architecture?
- Product line architecture one type of reference architecture?
- Product line architecture provides more product information
 - Rather than domain information
 - Makes variability between products of a product line explicit

What about reference implementations?

How things may fit together

Part II – challenges

Challenges

- Other work on benefits, problems, pro's, con's
- Examples
 - Reference architectures for multiple product lines
 - Nakagawa and Oquendo
 - Constraints for the design of variability-intensive service-oriented RA
 - Galster et al.
 - How reference architectures are used in industry
 - Angelov et al.

In this talk

- High-level challenges related to design and use of software RA
- Much has been said about advantages and benefits of RA
 - Challenges here maybe research questions for future work?
 - Or scenarios in which RA are difficult to apply?

Incremental and iterative development

- RA provide already made high-level design decisions
 - May limit solution space when exploring solution alternatives
 - Unclear what impact of RA is and how RA could be utilized most
- Agile frameworks such as Scrum
 - Projects driven by requirements as user stories, based on value
 - Requirements maintained on a product and sprint backlog
 - Product planning happens at the beginning of each sprint
- RA provides constraints which sprint planning must consider
 - Partially defined design in the RA
 - Do RA contradict or complement agile values, principles and practices?

Global development and markets

- Reference architecture: standardization
 - Between / across products in an application or technology domain
- Today's markets are not locally restricted
 - Products target private or institutional customers around the world
 - Ensure compliance with regulations in diverse markets
 - In particular in regulated industries such as medical devices or avionics
- Designing RA that comply with many regulations and policies from different countries and domains may be challenging
 - Even harder when considering multi-disciplinary solution approaches

Competitive markets, innovation

- RA provide partial solutions for products in a domain
- Software organizations compete through innovation
 - Many successful companies are innovative companies
 - Target new market opportunities, independent of current ideas
- But: time to market can be the difference between project success and failure

- May need "light-weight" RA
 - Balance potential for innovation and reduction of development effort
 - Commoditized, differentiating, innovative functionality

Practical relevance

 Design, evaluation and maintenance of RA should result in RA that are relevant and applicable in practice

- Empirical foundation
 - RA must be based on a sufficient number of real-life phenomena, and on well-known and proven principles
 - Address real stakeholder interests
 - · Building blocks derived from the problem domain and real life phenomena
 - Be based on concepts proven in practice
- Empirical validity
 - RA needs to be evaluated to ensure its applicability and validity

But then...

- Most current initiatives propose RA that lack any validation and target very general problems without a clear description of the application domain
- Many reference architectures described in literature remain at a proposal stage

Part III – emerging domains

Unmanned Aerial Vehicles (UAV)

- Current hype for "civil" applications
 - Agricultural technology, forestry, emergency responder support, to provide infrastructures in under-developed regions
 - Combines flight control, 3D computer vision, swarm intelligence, wireless communications, networking, power systems
- Commercially airworthy avionics and UAV applications must comply with regulations
 - International and national standards for airworthy software (process and product safety and reliability regulations)
 - Bodies in different countries, e.g., FAA, CAA
- Requirements elicitation? Evaluation?

Wearable Computing and Smart Homes

- Wearable computers or smartphones became common devices
 - Equipped with different types of sensors and can deploy various healthrelated applications
 - Smart homes and functional buildings offer automation infrastructures (sensors, actuators, control) to improve energy-efficiency, to assist with the care of people
- Domains: health, home automation, network engineering, wearable and mobile computing, wireless body sensor networks, etc.

Summary

"Reference architecture" is a fuzzy concept.

Reliance on RA may limit flexibility and innovation.

We may explore RA for cross-cutting domains.