Software reference architectures:
related architectural concepts,
challenges, and (new?) domains

Matthias Galster

Department of Computer Science and Software Engineering

May 6, 2015

CCCCCCCCCCCCCCCCCCCCCC



Goals

Relate RA to other architectural concepts

Discuss high-level, non-technical challenges
related to the design and use of RA

Explore domains that may benefit from RA

RA = “Reference Architecture” or “Reference Architectures”






Take-away messages

“Reference architecture” is a fuzzy concept.

Reliance on RA may limit flexibility and innovation.

We may explore RA for cross-cutting domains.




This talk has three parts.




Part I — architectural concepts

Software ) |
Reference model )
framework

\ ‘ y
\J\
\/\

Reference )

: archiiec/tu\re/
R Architecture |
i framework
\‘\_/\

6



Starting point: reference architecture

* Reusable architectural knowledge
— Generic artifacts, standards, design guidelines, styles, vocabulary, etc.

— Architectural best practices

* Not a highly specialized set of requirements
— Used as starting points to specialize for own requirements

— Used in and across organizations in a domain

e Why
— Standardization, interoperability

— Speed up development

E. Nakagawa et al.: Reference architecture and product line architecture: a subtle but critical difference. ECSA 2011

P. Kruchten: The rational unified process: an introduction. 2004

S. Angelov et al.: A classification of software reference architectures: analyzing their success and effectiveness. WICSA 2009
J. Governor et al.: Web 2.0 architectures - what entrepreneurs and information architects need to know. 2009



Architecture frameworks?




Architecture frameworks

* Focus on creating and using architecture description
— Set of conceptually related viewpoints (according to ISO/IEC/IEEE 42010)

e Structure thinking and architecture description: layers or views

* Could be part of software reference architecture description
— Generic and common vocabulary
— But maybe not (application, development) domain-specific?

— Often defined for high-level domains, free of detailed domain information

ISO/IEC/IEEE 42010

D. Emery, R. Hillard: Every architecture description needs a framework: expressing architecture frameworks using ISO/IEC 42010. WICSA 2009
G. Muller, P. van de Laar: Researching reference architectures and their relationship with frameworks, methods, techniques, and Tools. CSER 2009



Viewpoints

ISO/IEC/IEEE 42010

10



Viewpoints

e Used to create architecture views

* Views
— Concrete architecture from perspective of different stakeholders

— Frame concerns of those stakeholders

* Viewpoints
— Conventions for describing architecture-related concerns
— Set of stakeholders holding those concerns
— Set of model kinds

— Correspondence rules between different architectural models



Purposes )J€——— ascribe Stakeholders

has
possible has

Artifacts include
- has VieWS,

L viewpoints,

hi i
Architecture model kinds,
models,
stakeholders,
expressed by o concerns,
l decisions,

etc.

Architecture  \-----------------------
Description

12
ISO/IEC/IEEE 42010



ISO/IEC/IEEE 42010

System-of-
Interest

has an P

has

Stakeholder

<« identifies

Architecture

v

Architecture

holds

System
Concern

A 1.*

frames

1.7

Architecture

*

<« identifies

<« addresses

\ 1.7 1.7

Description

expressed with

o

Architecture

Viewpoint establishes 1 View
conventions
for »
1.* 1.*
Model B Architecture
Kind Model
establishes
conventions
for »

offers » Architecture
e Rationale
identifies »
0.*
Correspondence
Rule




So how are viewpoints “similar” to reference
architectures?

Provide generic architecture knowledge to
document, but without “implementation”

14



Software frameworks

/ ¥
* Simple HelloButton() method.
* @version 1.0
* @author john doe <doe.j@example.com>
*/
HelloButton()
{
JButton hello = new JButton( "Hello, wor
hello.addActionListener( new HelloBtnList

// use the JFrame type until support for t
// new component is finished

JFrame frame = new JFrame( "Hello Button"
Container pane = frame.getContentPane();
pane.add( hello );

frame. pack();

frame.show(); // display the fra

15



Software frameworks

 About implementation, code
— Generic functionality that can be adapted by user-written code

— Reusable “software environment”

e Can include compilers, code libraries, tools or API’s

* In contrast to regular libraries
— Define program control flow
— Extensibility (e.g., through overriding or specialization of code)
— May not allow their code to be modified

— l.e., have their own architecture



Examples

ASP.NET

e  MonoRail

 Google Web Toolkit

* Node.js

* CherryPy

* Django

* Ruby on Rails

17



Software frameworks have architecture

Web browser

T A
Caching framework URL dispatcher
A t
Template
T v
View
P v
Model

T

Database

Django
Model: describes data
Template: how user sees

data (e.g., html pages)
Views: what users see
Controller: URL dispatcher

18



Software frameworks are generic and provide

means for implementing (rather than describing)
software systems

19



Reference models

20



Reference models

Abstract framework or domain-specific ontology

Interlinked set of clearly defined concepts

Division of functionality with data flow between the pieces

— Decomposition of problem into parts that cooperatively solve problem

Reference architecture
— Reference model mapped onto software elements

— Software elements implement functionality of reference model

L. Bass et al.: Software architecture in practice. 2003.

21



Whereas reference modeling divides functionality,

RA is mapping of that functionality onto system
decomposition

22



Examples

von Neumann architecture
for sequential computing

Memory
Arithrr]etic
Control [ Logic
Unit .
Accumulator

AN

Input

Output

w

OSl layer reference model

application protocol

application application
presentation |- presomation protocol +| presentation
N session protocol N
sesslon ............................................ sesslon
transpon s transport prOtOCOI sy transpon
routers routers
network =3 k< st network
data link 1.5 T st data link
physical ] S >t physical
Host A subnet limit Host B

APDU

PPDU

SPDU

TPDU

packet

frame

bit

23



Product line architecture

Reference architecture = product line architecture?

Product line architecture one type of reference architecture?

Product line architecture provides more product information
— Rather than domain information

— Makes variability between products of a product line explicit

24



What about reference implementations?

25



How things may fit together

Software

framework
implements
v
. 1 0.*
Environment System
. . 0.*
A situated in
defines exhibits

Domain 0.

A Architecture
defined for
0.*
Reference model
maps on expresses

v 1.7
Reference Architecture
architecture description

described with
v

1.*
Architecture <> 1.* Architecture

framework viewpoint

26



Part I1 — challenges

27



Challenges

* Other work on benefits, problems, pro’s, con’s

 Examples

— Reference architectures for multiple product lines
e Nakagawa and Oquendo

— Constraints for the design of variability-intensive service-oriented RA
* Galster et al.

— How reference architectures are used in industry

e Angelov et al.

E. Y. Nakagawa, F. Oquendo: Perspectives and challenges of reference architectures in multi software product line. MultiPLE 2013
M. Galster et al.: Constraints for the design of variability-intensive service-oriented reference architectures - An industrial case study. IST 2013
S. Angelov et al.: Software reference architecture: exploring their usage and design in practice. ECSA 2013

28



In this talk

High-level challenges related to design and use of software RA

Much has been said about advantages and benefits of RA
— Challenges here maybe research questions for future work?

— Or scenarios in which RA are difficult to apply?

29



Incremental and iterative development

 RA provide already made high-level design decisions
— May limit solution space when exploring solution alternatives

— Unclear what impact of RA is and how RA could be utilized most

* Agile frameworks such as Scrum
— Projects driven by requirements as user stories, based on value
— Requirements maintained on a product and sprint backlog

— Product planning happens at the beginning of each sprint

* RA provides constraints which sprint planning must consider
— Partially defined design in the RA

— Do RA contradict or complement agile values, principles and practices?

30



Global development and markets

e Reference architecture: standardization

— Between / across products in an application or technology domain

 Today’s markets are not locally restricted
— Products target private or institutional customers around the world

— Ensure compliance with regulations in diverse markets

* |n particular in regulated industries such as medical devices or avionics

* Designing RA that comply with many regulations and policies
from different countries and domains may be challenging

— Even harder when considering multi-disciplinary solution approaches

31



Competitive markets, innovation

* RA provide partial solutions for products in a domain

e Software organizations compete through innovation
— Many successful companies are innovative companies

— Target new market opportunities, independent of current ideas

* But: time to market can be the difference between project
success and failure

* May need “light-weight” RA
— Balance potential for innovation and reduction of development effort

— Commoditized, differentiating, innovative functionality

J. Bosch: Achieving simplicity with the three-layer product model. IEEE Computer 2013 32
H. Olsson et al.: Scale and responsiveness in large-scale software development. IEEE Software 2014



Practical relevance

Design, evaluation and maintenance of RA should result in RA
that are relevant and applicable in practice

Empirical foundation

— RA must be based on a sufficient number of real-life phenomena, and on
well-known and proven principles
e Address real stakeholder interests

* Building blocks derived from the problem domain and real life phenomena

* Be based on concepts proven in practice

Empirical validity

— RA needs to be evaluated to ensure its applicability and validity

33



But then...

 Most current initiatives propose RA that lack any validation and
target very general problems without a clear description of the
application domain

* Many reference architectures described in literature remain at a
proposal stage

S. Affonso et al.: Reference architectures for self-managed software systems: a systematic literature review. SBCARS 2014
M. Guessi et al.: Representation of reference architectures: a systematic review. SEKE 2011

34



Part II1 — emerging domains

PIONEER

35



Unmanned Aerial Vehicles (UAV)

* Current hype for “civil” applications

— Agricultural technology, forestry, emergency responder support, to provide
infrastructures in under-developed regions

— Combines flight control, 3D computer vision, swarm intelligence, wireless
communications, networking, power systems

 Commercially airworthy avionics and UAV applications must
comply with regulations

— International and national standards for airworthy software (process and
product safety and reliability regulations)

— Bodies in different countries, e.g., FAA, CAA

 Requirements elicitation? Evaluation?

36



Wearable Computing and Smart Homes

 Wearable computers or smartphones became common devices

— Equipped with different types of sensors and can deploy various health-
related applications

— Smart homes and functional buildings offer automation infrastructures
(sensors, actuators, control) to improve energy-efficiency, to assist with the
care of people

 Domains: health, home automation, network engineering,
wearable and mobile computing, wireless body sensor networks,
etc.

37



Summary

“Reference architecture” is a fuzzy concept.

Reliance on RA may limit flexibility and innovation.

We may explore RA for cross-cutting domains.

38



